Lecture 23

Oracle TMs and Limits of Diagonalization
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Definition: An oracle TM is a TM M that has a special oracle tape and three special states
Qouery Ayess dno- A language O is specitied that is used as oracle tor M. During the run, it M
enters the state q,,,,,, then M moves to ¢, it g € O and g, it ¢ & O, where g denotes

the contents of the special oracle tape. Output of oracle TM M with oracle access to O on

input x is denoted by MO(x).

Note: Nondeterministic oracle TMs are detined similarly.
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Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) SAT € PoAT
Polytime TM M will put input ¢ on oracle tape and ask its oracle whether ¢p € SAT

and then output the opposite of it.
(2) Let O € P. Then, P =P?.

P C PY is trivial. P? C P is true because any polytime oracle machine M with oracle O

can be converted into a polytime machine M’ where instead of using O it simply

computes whether g € O in polytime.
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Diagonalization is any technique that relies solely upon the following properties of TMs:

ne existence of an effective representation of Turing machines by strings.

ne ability of one

M to simulate any another without much overhead in running time or space.

® For any oracle O, oracle TMs with access to O satisty the above two properties.

® Any result on TMs or complexity classes that uses only these two properties holds

w.r.t oracle TMs with access to O as well. (wWe wiLll see DTH w.r.t oracles soon)

Theorem (BGS75): There exist oracles A and B such that P* = NP* and P? # NP%.

Thus, P vs NP question cannot be settled through diagonalization “alone”.
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