Lecture 23

Oracle TMs and Limits of Diagonalization

Oracle Turing Machines

Idea:

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.

® An oracle TM can write a string g on the special oracle tape

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.

® An oracle TM can write a string g on the special oracle tape and get the answer to

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition:

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states

qquery’ q yes? no-

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states

Douery: Ayess dno- A language O is specified that is used as oracle for M.

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states

Qouery Ayess dno- A language O is specitied that is used as oracle tor M. During the run, it M

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states

Qouery Ayess dno- A language O is specitied that is used as oracle tor M. During the run, it M

enters the state g .,

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states

Qouery Ayess dno- A language O is specitied that is used as oracle tor M. During the run, it M

enters the state q,,,,,, then M moves to ¢, it g € O

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states

Qouery Ayess dno- A language O is specitied that is used as oracle tor M. During the run, it M
enters the state q,,,,,, then M moves to ¢, itg € O and g,, it g & O,

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states

Qouery Ayess dno- A language O is specitied that is used as oracle tor M. During the run, it M
enters the state q,,,,,, then M moves to ¢, it g € O and g, it ¢ & O, where g denotes

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states

Qouery Ayess dno- A language O is specitied that is used as oracle tor M. During the run, it M
enters the state q,,,,,, then M moves to ¢, it g € O and g, it ¢ & O, where g denotes

the contents of the special oracle tape.

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states
Qouery Ayess dno- A language O is specitied that is used as oracle tor M. During the run, it M
enters the state q,,,,,, then M moves to ¢, it g € O and g, it ¢ & O, where g denotes

the contents of the special oracle tape. Output of oracle TM M with oracle access to O on

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.
® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states
Qouery Ayess dno- A language O is specitied that is used as oracle tor M. During the run, it M
enters the state q,,,,,, then M moves to ¢, it g € O and g, it ¢ & O, where g denotes

the contents of the special oracle tape. Output of oracle TM M with oracle access to O on

input x is denoted by MO(x).

Oracle Turing Machines

Idea: Oracle TMs have a way to magically solve some decision problem, say O C {0,1}*.

® An oracle TM can write a string g on the special oracle tape and get the answer to

"Is g in O?" in one step.

o |t O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states
Qouery Ayess dno- A language O is specitied that is used as oracle tor M. During the run, it M
enters the state q,,,,,, then M moves to ¢, it g € O and g, it ¢ & O, where g denotes

the contents of the special oracle tape. Output of oracle TM M with oracle access to O on

input x is denoted by MO(x).

Note: Nondeterministic oracle TMs are detined similarly.

Oracle Turing Machines

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) SAT € PoAT

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) SAT € PoAT
Polytime TM M will put input ¢ on oracle tape and ask its oracle whether ¢p € SAT

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) SAT € PoAT
Polytime TM M will put input ¢ on oracle tape and ask its oracle whether ¢p € SAT

and then output the opposite of it.

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) SAT € PoAT
Polytime TM M will put input ¢ on oracle tape and ask its oracle whether ¢p € SAT

and then output the opposite of it.
(2) Let O € P. Then, P =P?.

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) SAT € PoAT
Polytime TM M will put input ¢ on oracle tape and ask its oracle whether ¢p € SAT

and then output the opposite of it.

(2) Let O € P. Then, P = PY.
P C PY is trivial.

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) SAT € PoAT
Polytime TM M will put input ¢ on oracle tape and ask its oracle whether ¢p € SAT

and then output the opposite of it.
(2) Let O € P. Then, P =P?.

P C PY is trivial. P? C P is true because any polytime oracle machine M with oracle O

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) SAT € PoAT
Polytime TM M will put input ¢ on oracle tape and ask its oracle whether ¢p € SAT

and then output the opposite of it.
(2) Let O € P. Then, P =P?.

P C PY is trivial. P? C P is true because any polytime oracle machine M with oracle O

can be converted into a polytime machine M’

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) SAT € PoAT
Polytime TM M will put input ¢ on oracle tape and ask its oracle whether ¢p € SAT

and then output the opposite of it.
(2) Let O € P. Then, P =P?.
P C PY is trivial. P C P is true because any polytime oracle machine M with oracle O

can be converted into a polytime machine M’ where instead of using O it simply

Oracle Turing Machines

Definition: For every O € {0,1}*, PY and NP are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) SAT € PoAT
Polytime TM M will put input ¢ on oracle tape and ask its oracle whether ¢p € SAT

and then output the opposite of it.
(2) Let O € P. Then, P =P?.

P C PY is trivial. P? C P is true because any polytime oracle machine M with oracle O

can be converted into a polytime machine M’ where instead of using O it simply

computes whether g € O in polytime.

PA = NPA

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp

Proof:

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp
Proof: 1) PEXPCOM NpEXPCOM. Tiivially true.

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp
Proof: 1) PEXPCOM NpEXPCOM. Tiivially true.

2) NPEXPCOM c Exp.

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp
Proof: 1) PEXPCOM NpEXPCOM. Tiivially true.

2) NPEXPCOM c Exp.

Suppose L has polytime oracle verifier N with access to EXPCOM.

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp
Proof: 1) PEXPCOM NpEXPCOM. Tiivially true.

2) NPEXPCOM c Exp.

Suppose L has polytime oracle verifier N with access to EXPCOM.

Then exponential time TM N’ for L on input x:

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp
Proof: 1) PEXPCOM NpEXPCOM. Tiivially true.

2) NPEXPCOM c Exp.

Suppose L has polytime oracle verifier N with access to EXPCOM.

Then exponential time TM N’ for L on input x:

® Simulates N on all possible us

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp
Proof: 1) PEXPCOM NpEXPCOM. Tiivially true.

2) NPEXPCOM c Exp.

Suppose L has polytime oracle verifier N with access to EXPCOM.

Then exponential time TM N’ for L on input x:

e Simulates N on all possible us and replace every call to oracle on (M, y,1")

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp
Proof: 1) PEXPCOM NpEXPCOM. Tiivially true.

2) NPEXPCOM c Exp.

Suppose L has polytime oracle verifier N with access to EXPCOM.

Then exponential time TM N’ for L on input x:
e Simulates N on all possible us and replace every call to oracle on (M, y,1")

by simulating M on y for 2" step.

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp
Proof: 1) PEXPCOM NpEXPCOM. Tiivially true.

2) NPEXPCOM c Exp.

Suppose L has polytime oracle verifier N with access to EXPCOM.

Then exponential time TM N’ for L on input x:

e Simulates N on all possible us and replace every call to oracle on (M, y,1")
by simulating M on y for 2" step.

® Outputs | if Ju such that N(x, u) = 1.

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp
Proof: 1) PEXPCOM NpEXPCOM. Tiivially true.

2) NPEXPCOM c Exp.

Suppose L has polytime oracle verifier N with access to EXPCOM.

Then exponential time TM N’ for L on input x:

e Simulates N on all possible us and replace every call to oracle on (M, y,1")
by simulating M on y for 2" step.

® Outputs | if Ju such that N(x, u) = 1.

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp

Proof:

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp

Proof: 3) EXP ¢ PEXPCOM,

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp

Proof: 3) EXP ¢ PEXPCOM,

Suppose L has a decider N that runs in at most k2" steps.

p4 = NP
Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,

SEXPCOM _ \pEXPCOM _ pyp

Proof: 3) EXP ¢ PEXPCOM,

Suppose L has a decider N that runs in at most k2" steps.
Construct a polytime oracle machine N" with access to EXPCOM that decides L.

p4 = NP
Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,

SEXPCOM _ \pEXPCOM _ pyp

Proof: 3) EXP ¢ PEXPCOM,

Suppose L has a decider N that runs in at most k2" steps.
Construct a polytime oracle machine N" with access to EXPCOM that decides L.

N’ on input x:

p4 = NP
Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,

SEXPCOM _ \pEXPCOM _ pyp

Proof: 3) EXP ¢ PEXPCOM,

Suppose L has a decider N that runs in at most k2" steps.
Construct a polytime oracle machine N" with access to EXPCOM that decides L.

N’ on input x:

e Writes (N, x,1*+ 1)

p4 = NP
Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,

SEXPCOM _ \pEXPCOM _ pyp

Proof: 3) EXP ¢ PEXPCOM,

Suppose L has a decider N that runs in at most k2" steps.
Construct a polytime oracle machine N" with access to EXPCOM that decides L.

N’ on input x:

e \Writes (NV, x, 100+ l)c) and call EXPCOM and output its answer.

PA = NPA

Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,
>EXPCOM _ \pEXPCOM _ gyp

Proof: 3) EXP ¢ PEXPCOM,

Suppose L has a decider N that runs in at most k2" steps.
Construct a polytime oracle machine N" with access to EXPCOM that decides L.

N’ on input x:
® |f x is sufficiently small then solve it by brute-force.

e \Writes (NV, x, 100+ l)c) and call EXPCOM and output its answer.

p4 = NP
Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,

SEXPCOM _ \pEXPCOM _ pyp

Proof: 3) EXP ¢ PEXPCOM,

Suppose L has a decider N that runs in at most k2" steps.
Construct a polytime oracle machine N" with access to EXPCOM that decides L.

N’ on input x: ~——— Swualler than the point where 20T 1D exoeeds k2"

® |f x is sufficiently small then solve it by brute-force.

e \Writes (NV, x, 100+ l)c) and call EXPCOM and output its answer.

p4 = NP
Claim: Let EXPCOM = {(M, x,1") | M outputs 1 on x within 2" steps}. Then,

SEXPCOM _ \pEXPCOM _ pyp

Proof: 3) EXP ¢ PEXPCOM,

Suppose L has a decider N that runs in at most k2" steps.
Construct a polytime oracle machine N" with access to EXPCOM that decides L.

N’ on input x: ~——— Swualler than the point where 20T 1D exoeeds k2"

® |f x is sufficiently small then solve it by brute-force.

e \Writes (NV, x, 100+ l)c) and call EXPCOM and output its answer.

Limits of Diagonalization

Limits of Diagonalization

Recall that

Limits of Diagonalization

Recall that ————

Limits of Diagonalization

Recall that ————

Diagonalization is any technique that relies solely upon the following properties of TMs:

ne existence of an effective representation of Turing machines by strings.

ne ability of one

M to simulate any another without much overhead in running time or space.

Limits of Diagonalization

Recall that ————

Diagonalization is any technique that relies solely upon the following properties of TMs:

ne existence of an effective representation of Turing machines by strings.

ne ability of one

M to simulate any another without much overhead in running time or space.

® For any oracle O, oracle TMs with access to O satisty the above two properties.

Limits of Diagonalization

Recall that ————

Diagonalization is any technique that relies solely upon the following properties of TMs:

ne existence of an effective representation of Turing machines by strings.

ne ability of one

M to simulate any another without much overhead in running time or space.

® For any oracle O, oracle TMs with access to O satisty the above two properties.

® Any result on TMs or complexity classes that uses only these two properties holds

Limits of Diagonalization

Recall that ————

Diagonalization is any technique that relies solely upon the following properties of TMs:

ne existence of an effective representation of Turing machines by strings.

ne ability of one

M to simulate any another without much overhead in running time or space.

® For any oracle O, oracle TMs with access to O satisty the above two properties.

® Any result on TMs or complexity classes that uses only these two properties holds

w.r.t oracle TMs with access to O as well.

Limits of Diagonalization

Recall that ————

Diagonalization is any technique that relies solely upon the following properties of TMs:

® The existence of an effective representation of Turing machines by strings.

® The ability of one

M to simulate any another without much overhead in running time or space.

® For any oracle O, oracle TMs with access to O satisty the above two properties.

® Any result on TMs or complexity classes that uses only these two properties holds

w.r.t oracle TMs with access to O as well. (wWe wiLll see DTH w.r.t oracles soon)

Limits of Diagonalization

Recall that ————

Diagonalization is any technique that relies solely upon the following properties of TMs:

ne existence of an effective representation of Turing machines by strings.

ne ability of one

M to simulate any another without much overhead in running time or space.

® For any oracle O, oracle TMs with access to O satisty the above two properties.

® Any result on TMs or complexity classes that uses only these two properties holds

w.r.t oracle TMs with access to O as well. (wWe wiLll see DTH w.r.t oracles soon)

Theorem (BGS75): There exist oracles A and B such that P* = NP* and P? # NP%.

Limits of Diagonalization

Recall that ————

Diagonalization is any technique that relies solely upon the following properties of TMs:

ne existence of an effective representation of Turing machines by strings.

ne ability of one

M to simulate any another without much overhead in running time or space.

® For any oracle O, oracle TMs with access to O satisty the above two properties.

® Any result on TMs or complexity classes that uses only these two properties holds

w.r.t oracle TMs with access to O as well. (wWe wiLll see DTH w.r.t oracles soon)

Theorem (BGS75): There exist oracles A and B such that P* = NP* and P? # NP%.

Thus, P vs NP question cannot be settled through diagonalization “alone”.

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying

fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying

fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.

Proof:

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying

fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.

Proof: Consider an oracle TM D with access to O that on input x:

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying

fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.

Proof: Consider an oracle TM D with access to O that on input x:

® Runs UTM U on (x, x) for g(|x|) steps.

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying

fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.

Proof: Consider an oracle TM D with access to O that on input x:
® Runs UTM U on (x, x) for g(|x|) steps.

® |t M. with access to O halts on x and writes some bits on the output tape

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying

fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.

Proof: Consider an oracle TM D with access to O that on input x:
® Runs UTM U on (x, x) for g(|x|) steps.

® |t M. with access to O halts on x and writes some bits on the output tape

within this time,

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying

fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.

Proof: Consider an oracle TM D with access to O that on input x:
® Runs UTM U on (x, x) for g(|x|) steps.

® |t M. with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying

fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.

Proof: Consider an oracle TM D with access to O that on input x:
® Runs UTM U on (x, x) for g(|x|) steps.

® |t M. with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.
® Else, D outputs 0.

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying

fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.

Proof: Consider an oracle TM D with access to O that on input x:
® Runs UTM U on (x, x) for g(|x|) steps.

® |t M. with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.
® Else, D outputs 0.

Let L(DY) denote the language decided by D.

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying
fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.

Proof: Consider an oracle TM D with access to O that on input x:

® Runs UTM U on (x, x) for g(|x|) steps.

® |t M. with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.
® Else, D outputs 0.

Let L(DY) denote the language decided by D.

Claim 1: L(D?) € DTIME(g(n))°.

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying
fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.
Proof: Consider an oracle TM D with access to O that on input x:

® Runs UTM U on (x, x) for g(|x|) steps.

® |t M. with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.
® Else, D outputs 0.

Let L(DY) denote the language decided by D.

Claim 1: L(D?) € DTIME(g(n))°.
Claim 2: L(D?) ¢ DTIME(f(n))°.

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying
fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.
Proof: Consider an oracle TM D with access to O that on input x:

® Runs UTM U on (x, x) for g(|x|) steps.

® |t M. with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.
® Else, D outputs 0.

Let L(DY) denote the language decided by D.

Claim 1: L(D?) € DTIME(g(n))". Proof: By defn. ... using time-constructibility...
Claim 2: L(D?) ¢ DTIME(f(n))°.

Deterministic Time Hierarchy with Oracle

Theorem: It f: N — N, g : N — N are time-constructible functions satistying
fimlog f(n) = o(g(n)), then forany O C {0,1}*, DTIME(f(n))Y c DTIME(g(n))Y.
Proof: Consider an oracle TM D with access to O that on input x:

® Runs UTM U on (x, x) for g(|x|) steps.

® |t M. with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.
® Else, D outputs 0.

Let L(DY) denote the language decided by D.

Claim 1: L(D?) € DTIME(g(n))". Proof: By defn. ... using time-constructibility...
Claim 2: L(D?) & DTIME(f(n))?. Proof: By contradiction ...

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.

Proof:

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

e UTM U with access to O can simulate M with access to O on input x

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

® UTM U with access to O can simulate M with access to O on input x within

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

® UTM U with access to O can simulate M with access to O on input x within

cf(|x|)logf(|x|) steps, where ¢’is a constant...

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

® UTM U with access to O can simulate M with access to O on input x within

cf(|x|)logf(|x|) steps, where ¢’is a constant...

Let x be a binary representation ot M whose length is sufficiently large.

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

® UTM U with access to O can simulate M with access to O on input x within

cf(|x|)logf(|x|) steps, where ¢’is a constant...

Let x be a binary representation ot M whose length is sufficiently large.

What happens when D with access to O gets x as input?

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

® UTM U with access to O can simulate M with access to O on input x within

cf(|x|)logf(|x|) steps, where ¢’is a constant...

Let x be a binary representation ot M whose length is sufficiently large.

What happens when D with access to O gets x as input? Recall D:

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

® UTM U with access to O can simulate M with access to O on input x within

cf(|x|)logf(|x|) steps, where ¢’is a constant...

Let x be a binary representation ot M whose length is sufficiently large.

What happens when D with access to O gets x as input? Recall D:

Consider an oracle TM D with access to O that on input x:
® Runs UTM U on (x,x) for g(|x|) steps.

o |f M, with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.
® Else, D outputs 0.

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

® UTM U with access to O can simulate M with access to O on input x within

cf(|x|)logf(|x|) steps, where ¢’is a constant...

Let x be a binary representation ot M whose length is sufficiently large.

What happens when D with access to O gets x as input? Recall D:

| Mx ha |tS on x Wlthln g(‘ X ‘) StepS Of U Consider an oracle TM D with access to O that on input x:
® Runs UTM U on (x,x) for g(|x|) steps.

o |f M, with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.
® Else, D outputs 0.

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

® UTM U with access to O can simulate M with access to O on input x within

cf(|x|)logf(|x|) steps, where ¢’is a constant...

Let x be a binary representation ot M whose length is sufficiently large.

What happens when D with access to O gets x as input? Recall D:

| Mx ha|tS on x Wlthln g(‘x ‘) StepS Of U Consider an oracle TM D with access to O that on input x:

® Runs UTM U on (x,x) for g(|x|) steps.
® |t M accepts x,

o |f M, with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.
® Else, D outputs 0.

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

® UTM U with access to O can simulate M with access to O on input x within

cf(|x|)logf(|x|) steps, where ¢’is a constant...

Let x be a binary representation ot M whose length is sufficiently large.

What happens when D with access to O gets x as input? Recall D:

| Mx ha|tS on x Wlthln g(‘x ‘) StepS Of U Consider an oracle TM D with access to O that on input x:

® Runs UTM U on (x,x) for g(|x|) steps.
® |t M accepts x,

o |f M, with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.
o |f Mx reJeCtS X, ® Else, D outputs 0.

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

® UTM U with access to O can simulate M with access to O on input x within

cf(|x|)logf(|x|) steps, where ¢’is a constant...

Let x be a binary representation ot M whose length is sufficiently large.

What happens when D with access to O gets x as input? Recall D:

| Mx ha|tS on x Wlthln g(‘x ‘) StepS Of U Consider an oracle TM D with access to O that on input x:

® Runs UTM U on (x,x) for g(|x|) steps.
® |t M accepts x, then D rejects x.

o |f M, with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.
o |f Mx reJeCtS X, ® Else, D outputs 0.

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

® UTM U with access to O can simulate M with access to O on input x within

cf(|x|)logf(|x|) steps, where ¢’is a constant...

Let x be a binary representation ot M whose length is sufficiently large.

What happens when D with access to O gets x as input? Recall D:

| Mx ha|tS on x Wlthln g(‘x ‘) StepS Of U Consider an oracle TM D with access to O that on input x:

® Runs UTM U on (x,x) for g(|x|) steps.
® |t M accepts x, then D rejects x.

o |f M, with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.
® |f M, rejects x, then D accepts x. o Else, D outputs 0

Deterministic Time Hierarchy with Oracle

Claim 2: L(D) & DTIME(f(n))?.
Proof: Suppose 3 an oracle TM M with access to O and run time O(f(n)) that decides L(D).

® M on any input x halts within ¢f(| x|) steps, where c is a constant.

® UTM U with access to O can simulate M with access to O on input x within

cf(|x|)logf(|x|) steps, where ¢’is a constant...

Let x be a binary representation ot M whose length is sufficiently large.

What happens when D with access to O gets x as input? Recall D:

| Mx ha|tS on x Wlthln g(‘x ‘) StepS Of U Consider an oracle TM D with access to O that on input x:

® Runs UTM U on (x,x) for g(|x|) steps.
® |t M accepts x, then D rejects x.

o |f M, with access to O halts on x and writes some bits on the output tape

within this time, then D outputs the opposite of the first bit.

® |f M, rejects x, then D accepts x. o Else, D outputs 0 -

