Lecture 23

Oracle TMs and Limits of Diagonalization

Idea:

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$.

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

"Is q in O?" in one step.

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

"Is q in O?" in one step.

• If O is a difficult language, then it gives extra power to the TM.

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

"Is q in O?" in one step.

• If O is a difficult language, then it gives extra power to the TM.

Definition:

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

"Is q in O?" in one step.

• If O is a difficult language, then it gives extra power to the TM.

Definition: An oracle TM is a TM M that has a special oracle tape

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

"Is q in O?" in one step.

• If O is a difficult language, then it gives extra power to the TM.

- **Definition:** An oracle TM is a TM M that has a special oracle tape and three special states

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

"Is q in O?" in one step.

• If O is a difficult language, then it gives extra power to the TM.

 $q_{query}, q_{yes}, q_{no}$.

Definition: An oracle TM is a TM M that has a special oracle tape and three special states

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string *q* on the special oracle tape and get the answer to

"Is q in O?" in one step.

• If O is a difficult language, then it gives extra power to the TM.

 $q_{query}, q_{yes}, q_{no}$. A language O is specified that is used as oracle for M.

- **Definition:** An oracle TM is a TM M that has a special oracle tape and three special states

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

"Is q in O?" in one step.

• If O is a difficult language, then it gives extra power to the TM.

- **Definition:** An oracle TM is a TM M that has a special oracle tape and three special states $q_{query}, q_{yes}, q_{no}$. A language O is specified that is used as oracle for M. During the run, if M

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

"Is q in O?" in one step.

• If O is a difficult language, then it gives extra power to the TM.

 $q_{query}, q_{yes}, q_{no}$. A language O is specified that is used as oracle for M. During the run, if Menters the state $q_{query'}$

- **Definition:** An oracle TM is a TM M that has a special oracle tape and three special states

- Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to
 - "Is q in O?" in one step.
 - If O is a difficult language, then it gives extra power to the TM.

enters the state q_{query} , then M moves to q_{ves} if $q \in O$

- **Definition:** An oracle TM is a TM M that has a special oracle tape and three special states $q_{query}, q_{yes}, q_{no}$. A language O is specified that is used as oracle for M. During the run, if M

- Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to
 - "Is q in O?" in one step.
 - If O is a difficult language, then it gives extra power to the TM.

enters the state q_{querv} , then M moves to q_{ves} if $q \in O$ and q_{no} if $q \notin O$,

- **Definition:** An oracle TM is a TM M that has a special oracle tape and three special states
- $q_{query}, q_{yes}, q_{no}$. A language O is specified that is used as oracle for M. During the run, if M

- Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to
 - "Is q in O?" in one step.
 - If O is a difficult language, then it gives extra power to the TM.

enters the state q_{querv} , then M moves to q_{ves} if $q \in O$ and q_{no} if $q \notin O$, where q denotes

- **Definition:** An oracle TM is a TM M that has a special oracle tape and three special states $q_{query}, q_{yes}, q_{no}$. A language O is specified that is used as oracle for M. During the run, if M

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

"Is q in O?" in one step.

• If O is a difficult language, then it gives extra power to the TM.

enters the state q_{query} , then M moves to q_{ves} if $q \in O$ and q_{no} if $q \notin O$, where q denotes the contents of the special oracle tape.

- **Definition:** An oracle TM is a TM M that has a special oracle tape and three special states $q_{query}, q_{yes}, q_{no}$. A language O is specified that is used as oracle for M. During the run, if M

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

"Is q in O?" in one step.

• If O is a difficult language, then it gives extra power to the TM.

enters the state q_{query} , then M moves to q_{yes} if $q \in O$ and q_{no} if $q \notin O$, where q denotes

- **Definition:** An oracle TM is a TM *M* that has a special oracle tape and three special states $q_{query}, q_{yes}, q_{no}$. A language O is specified that is used as oracle for M. During the run, if M
- the contents of the special oracle tape. Output of oracle TM M with oracle access to O on

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

"Is q in O?" in one step.

• If O is a difficult language, then it gives extra power to the TM.

enters the state q_{query} , then M moves to q_{ves} if $q \in O$ and q_{no} if $q \notin O$, where q denotes input x is denoted by $M^{O}(x)$.

- **Definition:** An oracle TM is a TM M that has a special oracle tape and three special states $q_{query}, q_{yes}, q_{no}$. A language O is specified that is used as oracle for M. During the run, if M
- the contents of the special oracle tape. Output of oracle TM M with oracle access to O on

Idea: Oracle TMs have a way to magically solve some decision problem, say $O \subseteq \{0,1\}^*$. • An oracle TM can write a string q on the special oracle tape and get the answer to

"Is q in O?" in one step.

• If O is a difficult language, then it gives extra power to the TM.

input x is denoted by $M^{O}(x)$.

Note: Nondeterministic oracle TMs are defined similarly.

- **Definition:** An oracle TM is a TM M that has a special oracle tape and three special states $q_{query}, q_{yes}, q_{no}$. A language O is specified that is used as oracle for M. During the run, if Menters the state q_{query} , then M moves to q_{ves} if $q \in O$ and q_{no} if $q \notin O$, where q denotes
- the contents of the special oracle tape. Output of oracle TM M with oracle access to O on

Definition: For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

- **Definition:** For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access to O, respectively.

- **Definition:** For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

- **Definition:** For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) $\overline{SAT} \in P^{SAT}$

- **Definition:** For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be

Definition: For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) $\overline{SAT} \in P^{SAT}$.

Polytime TM M will put input ϕ on oracle tape and ask its oracle whether $\phi \in SAT$

Definition: For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) $\overline{SAT} \in P^{SAT}$.

Polytime TM M will put input ϕ on oracle tape and ask its oracle whether $\phi \in SAT$ and then output the opposite of it.

Definition: For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) $\overline{SAT} \in P^{SAT}$.

Polytime TM M will put input ϕ on oracle tape and ask its oracle whether $\phi \in SAT$ and then output the opposite of it.

(2) Let $O \in \mathbf{P}$. Then, $\mathbf{P} = \mathbf{P}^O$.

Definition: For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) $\overline{SAT} \in P^{SAT}$.

Polytime TM M will put input ϕ on oracle tape and ask its oracle whether $\phi \in SAT$ and then output the opposite of it.

(2) Let $O \in \mathbf{P}$. Then, $\mathbf{P} = \mathbf{P}^O$. $\mathbf{P} \subset \mathbf{P}^O$ is trivial.

to O, respectively.

Examples:

(1) $\overline{SAT} \in P^{SAT}$.

Polytime TM M will put input ϕ on oracle tape and ask its oracle whether $\phi \in SAT$ and then output the opposite of it.

(2) Let $O \in \mathbf{P}$. Then, $\mathbf{P} = \mathbf{P}^O$.

 $\mathbf{P} \subseteq \mathbf{P}^O$ is trivial. $\mathbf{P}^O \subseteq \mathbf{P}$ is true because any polytime oracle machine M with oracle O

Definition: For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

Definition: For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) $\overline{SAT} \in P^{SAT}$.

and then output the opposite of it.

(2) Let $O \in \mathbf{P}$. Then, $\mathbf{P} = \mathbf{P}^O$.

 $\mathbf{P} \subseteq \mathbf{P}^O$ is trivial. $\mathbf{P}^O \subseteq \mathbf{P}$ is true because any polytime oracle machine M with oracle O can be converted into a polytime machine M'

Polytime TM M will put input ϕ on oracle tape and ask its oracle whether $\phi \in SAT$

Definition: For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) $\overline{SAT} \in P^{SAT}$.

and then output the opposite of it.

(2) Let $O \in \mathbf{P}$. Then, $\mathbf{P} = \mathbf{P}^O$.

 $\mathbf{P} \subseteq \mathbf{P}^O$ is trivial. $\mathbf{P}^O \subseteq \mathbf{P}$ is true because any polytime oracle machine M with oracle O can be converted into a polytime machine M' where instead of using O it simply

Polytime TM M will put input ϕ on oracle tape and ask its oracle whether $\phi \in SAT$

Definition: For every $O \in \{0,1\}^*$, \mathbb{P}^O and \mathbb{NP}^O are the set of languages that can be decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to O, respectively.

Examples:

(1) $\overline{SAT} \in P^{SAT}$.

and then output the opposite of it.

(2) Let $O \in \mathbf{P}$. Then, $\mathbf{P} = \mathbf{P}^O$.

computes whether $q \in O$ in polytime.

Polytime TM M will put input ϕ on oracle tape and ask its oracle whether $\phi \in SAT$

 $\mathbf{P} \subseteq \mathbf{P}^O$ is trivial. $\mathbf{P}^O \subseteq \mathbf{P}$ is true because any polytime oracle machine M with oracle O can be converted into a polytime machine M' where instead of using O it simply

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | *M* outputs 1 on *x* within 2^n steps}. Then,

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | *M* outputs 1 on *x* within 2^n steps}. Then,

$\mathsf{P}^{EXPCOM} = \mathsf{NP}^{EXPCOM} = \mathsf{EXP}$

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle \mid M$ outputs 1 on x within 2^n steps}. Then,

Proof:

$\mathsf{P}^{EXPCOM} = \mathsf{NP}^{EXPCOM} = \mathsf{EXP}$

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | *M* outputs 1 on *x* within 2^n steps}. Then, $P^{EXPCOM} = NP^{EXPCOM} = EXP$ **Proof:** 1) $P^{EXPCOM} \subseteq NP^{EXPCOM}$: Trivially true.

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | M outputs 1 on x within 2^n steps}. Then, $P^{EXPCOM} = NP^{EXPCOM} = EXP$ **Proof:** 1) $P^{EXPCOM} \subseteq NP^{EXPCOM}$: Trivially true. 2) $NP^{EXPCOM} \subseteq EXP$:

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | *M* outputs 1 on *x* within 2^n steps}. Then, PEXPCOM = NPEXPCOM = EXP**Proof:** 1) $P^{EXPCOM} \subseteq NP^{EXPCOM}$: Trivially true. 2) $NP^{EXPCOM} \subseteq EXP$:

Suppose L has polytime oracle verifier N with access to EXPCOM.

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | *M* outputs 1 on *x* within 2^n steps}. Then, PEXPCOM = NPEXPCOM = FXP**Proof:** 1) $P^{EXPCOM} \subseteq NP^{EXPCOM}$: Trivially true. 2) $NP^{EXPCOM} \subset EXP$: Suppose L has polytime oracle verifier N with access to EXPCOM. Then exponential time TM N' for L on input x:

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | *M* outputs 1 on *x* within 2^n steps}. Then, PEXPCOM = NPEXPCOM = FXP**Proof:** 1) $P^{EXPCOM} \subseteq NP^{EXPCOM}$: Trivially true. 2) $NP^{EXPCOM} \subset EXP$:

> Suppose L has polytime oracle verifier N with access to EXPCOM. Then exponential time TM N' for L on input x:

• Simulates N on all possible us

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | M outputs 1 on x within 2^n steps}. Then, PEXPCOM = NPEXPCOM = FXP**Proof:** 1) $P^{EXPCOM} \subseteq NP^{EXPCOM}$: Trivially true. 2) $NP^{EXPCOM} \subset EXP$:

Suppose L has polytime oracle verifier N with access to EXPCOM.

Then exponential time TM N' for L on input x:

• Simulates N on all possible us and replace every call to oracle on $\langle M, y, 1^n \rangle$

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | M outputs 1 on x within 2^n steps}. Then, PEXPCOM = NPEXPCOM = FXP**Proof:** 1) $P^{EXPCOM} \subseteq NP^{EXPCOM}$: Trivially true. 2) $NP^{EXPCOM} \subset EXP$:

Suppose L has polytime oracle verifier N with access to EXPCOM.

Then exponential time TM N' for L on input x:

by simulating M on y for 2^n step.

• Simulates N on all possible us and replace every call to oracle on $\langle M, y, 1^n \rangle$

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | M outputs 1 on x within 2^n steps}. Then, PEXPCOM = NPEXPCOM = FXP**Proof:** 1) $P^{EXPCOM} \subseteq NP^{EXPCOM}$: Trivially true. 2) $NP^{EXPCOM} \subset EXP$:

Suppose L has polytime oracle verifier N with access to EXPCOM.

Then exponential time TM N' for L on input x:

- by simulating M on y for 2^n step.
- Outputs 1 if $\exists u$ such that N(x, u) = 1.

• Simulates N on all possible us and replace every call to oracle on $\langle M, y, 1^n \rangle$

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | M outputs 1 on x within 2^n steps}. Then, PEXPCOM = NPEXPCOM = FXP**Proof:** 1) $P^{EXPCOM} \subseteq NP^{EXPCOM}$: Trivially true. 2) $NP^{EXPCOM} \subset EXP$:

Suppose L has polytime oracle verifier N with access to EXPCOM.

Then exponential time TM N' for L on input x:

- by simulating M on y for 2^n step.
- Outputs 1 if $\exists u$ such that N(x, u) = 1.

• Simulates N on all possible us and replace every call to oracle on $\langle M, y, 1^n \rangle$

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle \mid M$ outputs 1 on x within 2^n steps}. Then,

Proof:

$\mathsf{P}^{EXPCOM} = \mathsf{NP}^{EXPCOM} = \mathsf{EXP}$

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | *M* outputs 1 on *x* within 2^n steps}. Then, **Proof:** 3) $EXP \subseteq P^{EXPCOM}$:

$P^{EXPCOM} = NP^{EXPCOM} = EXP$

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | M outputs 1 on x within 2^n steps}. Then, **Proof:** 3) EXP \subseteq P^{EXPCOM}.

Suppose L has a decider N that runs in at most $k2^{n^{c}}$ steps.

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | M outputs 1 on x within 2^n steps}. Then, **Proof:** 3) EXP \subseteq P^{EXPCOM}.

Suppose L has a decider N that runs in at most $k2^{n^{c}}$ steps.

Construct a polytime oracle machine N' with access to **EXPCOM** that decides L.

$P^{EXPCOM} = NP^{EXPCOM} = EXP$

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | *M* outputs 1 on *x* within 2^n steps}. Then, **Proof:** 3) EXP \subseteq P^{EXPCOM}.

Construct a polytime oracle machine N' with access to **EXPCOM** that decides L.

N' on input x:

$P^{EXPCOM} = NP^{EXPCOM} = EXP$

Suppose L has a decider N that runs in at most $k2^{n^{c}}$ steps.

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | *M* outputs 1 on *x* within 2^n steps}. Then, **Proof:** 3) EXP \subseteq P^{EXPCOM}.

> Suppose L has a decider N that runs in at most $k2^{n^{c}}$ steps. Construct a polytime oracle machine N' with access to **EXPCOM** that decides L.

N' on input x:

• Writes $\langle N, x, 1^{(n+1)^c} \rangle$

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | *M* outputs 1 on *x* within 2^n steps}. Then, **Proof:** 3) EXP \subseteq P^{EXPCOM}.

Suppose L has a decider N that runs in at most $k2^{n^c}$ steps. Construct a polytime oracle machine N' with access to **EXPCOM** that decides L.

N' on input x:

• Writes $\langle N, x, 1^{(n+1)^c} \rangle$ and call **EXPCOM** and output its answer.

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | *M* outputs 1 on *x* within 2^n steps}. Then, **Proof:** 3) EXP \subseteq P^{EXPCOM}.

Suppose L has a decider N that runs in at most $k2^{n^{c}}$ steps.

N' on input x:

- If x is sufficiently small then solve it by brute-force.
- Writes $\langle N, x, 1^{(n+1)^c} \rangle$ and call **EXPCOM** and output its answer.

- Construct a polytime oracle machine N' with access to **EXPCOM** that decides L.

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | M outputs 1 on x within 2^n steps}. Then, **Proof:** 3) EXP \subseteq P^{EXPCOM}.

Suppose L has a decider N that runs in at most $k2^{n^c}$ steps.

N' on input x:

- If x is sufficiently small then solve it by brute-force.
- Writes $\langle N, x, 1^{(n+1)^c} \rangle$ and call **EXPCOM** and output its answer.

- Construct a polytime oracle machine N' with access to **EXPCOM** that decides L.
 - Smaller than the point where $2^{(n+1)^c}$ exceeds $k2^{n^c}$

Claim: Let **EXPCOM** = { $\langle M, x, 1^n \rangle$ | M outputs 1 on x within 2^n steps}. Then, **Proof:** 3) EXP \subseteq P^{EXPCOM}.

Suppose L has a decider N that runs in at most $k2^{n^{c}}$ steps.

N' on input x:

- If x is sufficiently small then solve it by brute-force.
- Writes $\langle N, x, 1^{(n+1)^c} \rangle$ and call **EXPCOM** and output its answer.

- Construct a polytime oracle machine N' with access to **EXPCOM** that decides L.
 - Smaller than the point where $2^{(n+1)^c}$ exceeds $k2^{n^c}$

Recall that

Recall that

Recall that -

- The existence of an effective representation of Turing machines by strings.
- The ability of one TM to simulate any another without much overhead in running time or space.

Recall that -

- The existence of an effective representation of Turing machines by strings.
- The ability of one TM to simulate any another without much overhead in running time or space.

Diagonalization is any technique that relies solely upon the following properties of TMs:

• For any oracle O, oracle TMs with access to O satisfy the above two properties.

Recall that -

- The existence of an effective representation of Turing machines by strings.
- The ability of one TM to simulate any another without much overhead in running time or space.
- For any oracle O, oracle TMs with access to O satisfy the above two properties. • Any result on TMs or complexity classes that uses only these two properties holds

Recall that -

- The existence of an effective representation of Turing machines by strings.
- The ability of one TM to simulate any another without much overhead in running time or space.
- w.r.t oracle TMs with access to O as well.
- For any oracle O, oracle TMs with access to O satisfy the above two properties. • Any result on TMs or complexity classes that uses only these two properties holds

Recall that -

- The existence of an effective representation of Turing machines by strings.
- The ability of one TM to simulate any another without much overhead in running time or space.
- w.r.t oracle TMs with access to O as well. (We will see DTH w.r.t oracles soon)
- For any oracle O, oracle TMs with access to O satisfy the above two properties. Any result on TMs or complexity classes that uses only these two properties holds

Recall that ---

- The existence of an effective representation of Turing machines by strings.
- The ability of one TM to simulate any another without much overhead in running time or space.
- For any oracle O, oracle TMs with access to O satisfy the above two properties.
- Any result on TMs or complexity classes that uses only these two properties holds w.r.t oracle TMs with access to O as well. (We will see DTH w.r.t oracles soon)

Diagonalization is any technique that relies solely upon the following properties of TMs:

Theorem (BGS75): There exist oracles A and B such that $\mathbf{P}^A = \mathbf{N}\mathbf{P}^A$ and $\mathbf{P}^B \neq \mathbf{N}\mathbf{P}^B$.

Recall that ---

- The existence of an effective representation of Turing machines by strings.
- The ability of one TM to simulate any another without much overhead in running time or space.
- For any oracle O, oracle TMs with access to O satisfy the above two properties.
- Any result on TMs or complexity classes that uses only these two properties holds w.r.t oracle TMs with access to O as well. (We will see DTH w.r.t oracles soon)

Thus, **P** vs **NP** question cannot be settled through diagonalization "alone".

- **Theorem (BGS75)**: There exist oracles A and B such that $\mathbf{P}^A = \mathbf{N}\mathbf{P}^A$ and $\mathbf{P}^B \neq \mathbf{N}\mathbf{P}^B$.

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$.

Theorem: If $f : \mathbb{N} \to \mathbb{N}$, $g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$. **Proof:**

Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$.

Proof: Consider an oracle TM D with access to O that on input x:

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$.

Proof: Consider an oracle TM D with access to O that on input x:

• Runs UTM U on (x, x) for g(|x|) steps.
Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$.

Proof: Consider an oracle TM D with access to O that on input x:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_{y} with access to O halts on x and writes some bits on the output tape

Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$.

Proof: Consider an oracle TM D with access to O that on input x:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time,

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$.

Proof: Consider an oracle TM D with access to O that on input x:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.

Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$.

Proof: Consider an oracle TM D with access to O that on input x:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, D outputs 0.

Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$.

Proof: Consider an oracle TM D with access to O that on input x:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, D outputs 0.

Let $L(D^{O})$ denote the language decided by D.

Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$.

Proof: Consider an oracle TM D with access to O that on input x:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Let $L(D^{O})$ denote the language decided by D. Claim 1: $L(D^O) \in \text{DTIME}(g(n))^O$.

Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$.

Proof: Consider an oracle TM D with access to O that on input x:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Let $L(D^{O})$ denote the language decided by D. Claim 1: $L(D^O) \in \text{DTIME}(g(n))^O$. Claim 2: $L(D^O) \notin \text{DTIME}(f(n))^O$.

Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$.

Proof: Consider an oracle TM D with access to O that on input x:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Let $L(D^{O})$ denote the language decided by D. Claim 2: $L(D^O) \notin DTIME(f(n))^O$.

- **Claim 1:** $L(D^O) \in \text{DTIME}(g(n))^O$. **Proof:** By defn. ... using time-constructibility...

Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then for any $O \subseteq \{0,1\}^*$, $\mathsf{DTIME}(f(n))^O \subset \mathsf{DTIME}(g(n))^O$.

Proof: Consider an oracle TM D with access to O that on input x:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Let $L(D^{O})$ denote the language decided by D.

- **Claim 1:** $L(D^O) \in \text{DTIME}(g(n))^O$. **Proof:** By defn. ... using time-constructibility...
- **Claim 2:** $L(D^O) \notin DTIME(f(n))^O$. **Proof:** By contradiction ...

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$. **Proof:**

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

Proof: Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

- M on any input x halts within cf(|x|) steps, where c is a constant.

Proof: Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).

Claim 2: $L(D) \notin DTIME(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x

Claim 2: $L(D) \notin DTIME(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x within

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Claim 2: $L(D) \notin DTIME(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is sufficiently large.

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is sufficiently large.

What happens when D with access to O gets x as input?

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is sufficiently large.

What happens when D with access to O gets x as input?

- **Recall** *D*:

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is sufficiently large.

What happens when D with access to O gets x as input?

- **Recall** *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is sufficiently large.

What happens when D with access to O gets x as input?

• M_r halts on x within g(|x|) steps of U.

- **Recall** *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is sufficiently large.

What happens when D with access to O gets x as input?

- M_r halts on x within g(|x|) steps of U.
- If M_x accepts x,

- **Recall** *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, D outputs 0.

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is sufficiently large.

What happens when D with access to O gets x as input?

- M_r halts on x within g(|x|) steps of U.
- If M_x accepts x,
- If M_x rejects x,

- **Recall** *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, D outputs 0.

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is sufficiently large.

What happens when D with access to O gets x as input?

- M_r halts on x within g(|x|) steps of U.
- If M_x accepts x, then D rejects x.
- If M_x rejects x,

- **Recall** *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, D outputs 0.

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is sufficiently large.

What happens when D with access to O gets x as input?

- M_r halts on x within g(|x|) steps of U.
- If M_x accepts x, then D rejects x.
- If M_x rejects x, then D accepts x.

- **Recall** *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Claim 2: $L(D) \notin \text{DTIME}(f(n))^O$.

- **Proof:** Suppose \exists an oracle TM M with access to O and run time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U with access to O can simulate M with access to O on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is sufficiently large.

What happens when D with access to O gets x as input?

- M_r halts on x within g(|x|) steps of U.
- If M_x accepts x, then D rejects x.
- If M_x rejects x, then D accepts x.

- **Recall** *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x with access to O halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

