
Lecture 23

Oracle TMs and Limits of Diagonalization

Oracle Turing Machines
Idea:

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition:

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM and three special states

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM
.qquery, qyes, qno

 and three special states

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM
.qquery, qyes, qno A language is specified that is used as oracle for .O M

 and three special states

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM
.qquery, qyes, qno A language is specified that is used as oracle for .O M During the run, if M

 and three special states

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM
.qquery, qyes, qno A language is specified that is used as oracle for .O M During the run, if M

enters the state ,qquery

 and three special states

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM
.qquery, qyes, qno A language is specified that is used as oracle for .O M During the run, if M

enters the state ,qquery

 and three special states

then moves to if M qyes q ∈ O

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM
.qquery, qyes, qno A language is specified that is used as oracle for .O M During the run, if M

enters the state ,qquery

 and three special states

then moves to if M qyes q ∈ O and if ,qno q ∉ O

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM
.qquery, qyes, qno A language is specified that is used as oracle for .O M During the run, if M

enters the state ,qquery

 and three special states

then moves to if M qyes q ∈ O and if ,qno q ∉ O where denotes q

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM
.qquery, qyes, qno A language is specified that is used as oracle for .O M During the run, if M

enters the state ,qquery

the contents of the special oracle tape.

 and three special states

then moves to if M qyes q ∈ O and if ,qno q ∉ O where denotes q

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM
.qquery, qyes, qno A language is specified that is used as oracle for .O M During the run, if M

enters the state ,qquery

the contents of the special oracle tape. Output of oracle TM with oracle access to onM O

 and three special states

then moves to if M qyes q ∈ O and if ,qno q ∉ O where denotes q

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM
.qquery, qyes, qno A language is specified that is used as oracle for .O M During the run, if M

enters the state ,qquery

the contents of the special oracle tape. Output of oracle TM with oracle access to onM O
input is denoted by .x MO(x)

 and three special states

then moves to if M qyes q ∈ O and if ,qno q ∉ O where denotes q

Oracle Turing Machines
Idea: Oracle TMs have a way to magically solve some decision problem, say .O ⊆ {0,1}*

• An oracle TM can write a string on the special oracle tapeq and get the answer to

“Is in ” in one step.q O?

• If is a difficult language, then it gives extra power to the TM.O

Definition: An oracle TM is a TM that has a special oracle tapeM
.qquery, qyes, qno A language is specified that is used as oracle for .O M During the run, if M

enters the state ,qquery

the contents of the special oracle tape. Output of oracle TM with oracle access to onM O
input is denoted by .x MO(x)

Note: Nondeterministic oracle TMs are defined similarly.

 and three special states

then moves to if M qyes q ∈ O and if ,qno q ∉ O where denotes q

Oracle Turing Machines

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to , respectively.O

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to , respectively.O

Examples:

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to , respectively.O

Examples:

 P .(1) SAT ∈ SAT

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to , respectively.O

Examples:

 P .(1) SAT ∈ SAT

Polytime TM will put input on oracle tape and ask its oracle whether SATM ϕ ϕ ∈

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to , respectively.O

Examples:

 P .(1) SAT ∈ SAT

Polytime TM will put input on oracle tape and ask its oracle whether SATM ϕ ϕ ∈
and then output the opposite of it.

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to , respectively.O

Examples:

 P .(1) SAT ∈ SAT

Polytime TM will put input on oracle tape and ask its oracle whether SATM ϕ ϕ ∈
and then output the opposite of it.

 Let P. Then, P P .(2) O ∈ = O

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to , respectively.O

Examples:

 P .(1) SAT ∈ SAT

Polytime TM will put input on oracle tape and ask its oracle whether SATM ϕ ϕ ∈
and then output the opposite of it.

 Let P. Then, P P .(2) O ∈ = O

P P is trivial.⊆ O

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to , respectively.O

Examples:

 P .(1) SAT ∈ SAT

Polytime TM will put input on oracle tape and ask its oracle whether SATM ϕ ϕ ∈
and then output the opposite of it.

 Let P. Then, P P .(2) O ∈ = O

P P is trivial.⊆ O P P is true because any polytime oracle machine with oracle O ⊆ M O

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to , respectively.O

Examples:

 P .(1) SAT ∈ SAT

Polytime TM will put input on oracle tape and ask its oracle whether SATM ϕ ϕ ∈
and then output the opposite of it.

 Let P. Then, P P .(2) O ∈ = O

P P is trivial.⊆ O P P is true because any polytime oracle machine with oracle O ⊆ M O
can be converted into a polytime machine M′￼

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to , respectively.O

Examples:

 P .(1) SAT ∈ SAT

Polytime TM will put input on oracle tape and ask its oracle whether SATM ϕ ϕ ∈
and then output the opposite of it.

 Let P. Then, P P .(2) O ∈ = O

P P is trivial.⊆ O P P is true because any polytime oracle machine with oracle O ⊆ M O
can be converted into a polytime machine M′￼ where instead of using it simply O

Oracle Turing Machines
Definition: For every , P and NP are the set of languages that can be O ∈ {0,1}* O O

decided by a polytime deterministic TMs and non-deterministic TMs with oracle access

to , respectively.O

Examples:

 P .(1) SAT ∈ SAT

Polytime TM will put input on oracle tape and ask its oracle whether SATM ϕ ϕ ∈
and then output the opposite of it.

 Let P. Then, P P .(2) O ∈ = O

P P is trivial.⊆ O P P is true because any polytime oracle machine with oracle O ⊆ M O
can be converted into a polytime machine M′￼ where instead of using it simply O
computes whether in polytime.q ∈ O

P NPA = A

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof:

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: P NP : Trivially true.1) EXPCOM ⊆ EXPCOM

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: P NP : Trivially true.1) EXPCOM ⊆ EXPCOM

 NP EXP:2) EXPCOM ⊆

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: P NP : Trivially true.1) EXPCOM ⊆ EXPCOM

 NP EXP:2) EXPCOM ⊆

Suppose has polytime oracle verifier with access to EXPCOM.L N

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: P NP : Trivially true.1) EXPCOM ⊆ EXPCOM

 NP EXP:2) EXPCOM ⊆

Suppose has polytime oracle verifier with access to EXPCOM.L N

Then exponential time TM for on input :N′￼ L x

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: P NP : Trivially true.1) EXPCOM ⊆ EXPCOM

 NP EXP:2) EXPCOM ⊆

Suppose has polytime oracle verifier with access to EXPCOM.L N

Then exponential time TM for on input :N′￼ L x

• Simulates on all possible sN u

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: P NP : Trivially true.1) EXPCOM ⊆ EXPCOM

 NP EXP:2) EXPCOM ⊆

Suppose has polytime oracle verifier with access to EXPCOM.L N

Then exponential time TM for on input :N′￼ L x

• Simulates on all possible sN u and replace every call to oracle on ⟨M, y,1n⟩

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: P NP : Trivially true.1) EXPCOM ⊆ EXPCOM

 NP EXP:2) EXPCOM ⊆

Suppose has polytime oracle verifier with access to EXPCOM.L N

Then exponential time TM for on input :N′￼ L x

• Simulates on all possible sN u and replace every call to oracle on ⟨M, y,1n⟩
by simulating on for step.M y 2n

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: P NP : Trivially true.1) EXPCOM ⊆ EXPCOM

 NP EXP:2) EXPCOM ⊆

Suppose has polytime oracle verifier with access to EXPCOM.L N

Then exponential time TM for on input :N′￼ L x

• Simulates on all possible sN u and replace every call to oracle on ⟨M, y,1n⟩
by simulating on for step.M y 2n

• Outputs if such that .1 ∃u N(x, u) = 1

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: P NP : Trivially true.1) EXPCOM ⊆ EXPCOM

 NP EXP:2) EXPCOM ⊆

Suppose has polytime oracle verifier with access to EXPCOM.L N

Then exponential time TM for on input :N′￼ L x

• Simulates on all possible sN u and replace every call to oracle on ⟨M, y,1n⟩
by simulating on for step.M y 2n

• Outputs if such that .1 ∃u N(x, u) = 1
…

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof:

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: EXP P :3) ⊆ EXPCOM

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: EXP P :3) ⊆ EXPCOM

Suppose has a decider that runs in at most steps.L N k2nc

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: EXP P :3) ⊆ EXPCOM

Suppose has a decider that runs in at most steps.L N k2nc

Construct a polytime oracle machine with access to EXPCOM that decides .N′￼ L

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: EXP P :3) ⊆ EXPCOM

Suppose has a decider that runs in at most steps.L N k2nc

Construct a polytime oracle machine with access to EXPCOM that decides .N′￼ L

 on input :N′￼ x

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: EXP P :3) ⊆ EXPCOM

Suppose has a decider that runs in at most steps.L N k2nc

Construct a polytime oracle machine with access to EXPCOM that decides .N′￼ L

 on input :N′￼ x

• Writes ⟨N, x,1(n + 1)c
⟩

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: EXP P :3) ⊆ EXPCOM

Suppose has a decider that runs in at most steps.L N k2nc

Construct a polytime oracle machine with access to EXPCOM that decides .N′￼ L

 on input :N′￼ x

• Writes ⟨N, x,1(n + 1)c
⟩and call EXPCOM and output its answer.

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: EXP P :3) ⊆ EXPCOM

Suppose has a decider that runs in at most steps.L N k2nc

Construct a polytime oracle machine with access to EXPCOM that decides .N′￼ L

 on input :N′￼ x

• If is sufficiently small then solve it by brute-force. x

• Writes ⟨N, x,1(n + 1)c
⟩and call EXPCOM and output its answer.

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: EXP P :3) ⊆ EXPCOM

Suppose has a decider that runs in at most steps.L N k2nc

Construct a polytime oracle machine with access to EXPCOM that decides .N′￼ L

 on input :N′￼ x

• If is sufficiently small then solve it by brute-force. x

• Writes ⟨N, x,1(n + 1)c
⟩and call EXPCOM and output its answer.

Smaller than the point where exceeds 2(n + 1)c
k2nc

P NPA = A

Claim: Let EXPCOM outputs on within steps . Then,= {⟨M, x,1n⟩ ∣ M 1 x 2n }

P NP EXPEXPCOM = EXPCOM =

Proof: EXP P :3) ⊆ EXPCOM

Suppose has a decider that runs in at most steps.L N k2nc

Construct a polytime oracle machine with access to EXPCOM that decides .N′￼ L

 on input :N′￼ x

• If is sufficiently small then solve it by brute-force. x

• Writes ⟨N, x,1(n + 1)c
⟩and call EXPCOM and output its answer.

Smaller than the point where exceeds 2(n + 1)c
k2nc

Limits of Diagonalization

Limits of Diagonalization
Recall that

Limits of Diagonalization
Recall that

Limits of Diagonalization

Diagonalization is any technique that relies solely upon the following properties of TMs:

• The existence of an effective representation of Turing machines by strings.

• The ability of one TM to simulate any another without much overhead in running time or space.

Recall that

Limits of Diagonalization

Diagonalization is any technique that relies solely upon the following properties of TMs:

• The existence of an effective representation of Turing machines by strings.

• The ability of one TM to simulate any another without much overhead in running time or space.

Recall that

• For any oracle , oracle TMs with access to satisfy the above two properties.O O

Limits of Diagonalization

Diagonalization is any technique that relies solely upon the following properties of TMs:

• The existence of an effective representation of Turing machines by strings.

• The ability of one TM to simulate any another without much overhead in running time or space.

Recall that

• For any oracle , oracle TMs with access to satisfy the above two properties.O O

• Any result on TMs or complexity classes that uses only these two properties holds

Limits of Diagonalization

Diagonalization is any technique that relies solely upon the following properties of TMs:

• The existence of an effective representation of Turing machines by strings.

• The ability of one TM to simulate any another without much overhead in running time or space.

Recall that

• For any oracle , oracle TMs with access to satisfy the above two properties.O O

• Any result on TMs or complexity classes that uses only these two properties holds

w.r.t oracle TMs with access to as well.O

Limits of Diagonalization

Diagonalization is any technique that relies solely upon the following properties of TMs:

• The existence of an effective representation of Turing machines by strings.

• The ability of one TM to simulate any another without much overhead in running time or space.

Recall that

• For any oracle , oracle TMs with access to satisfy the above two properties.O O

• Any result on TMs or complexity classes that uses only these two properties holds

w.r.t oracle TMs with access to as well.O (We will see DTH w.r.t oracles soon)

Limits of Diagonalization

Diagonalization is any technique that relies solely upon the following properties of TMs:

• The existence of an effective representation of Turing machines by strings.

• The ability of one TM to simulate any another without much overhead in running time or space.

Recall that

• For any oracle , oracle TMs with access to satisfy the above two properties.O O

• Any result on TMs or complexity classes that uses only these two properties holds

Theorem (BGS75): There exist oracles and such that P NP and P NP .A B A = A B ≠ B

w.r.t oracle TMs with access to as well.O (We will see DTH w.r.t oracles soon)

Limits of Diagonalization

Diagonalization is any technique that relies solely upon the following properties of TMs:

• The existence of an effective representation of Turing machines by strings.

• The ability of one TM to simulate any another without much overhead in running time or space.

Recall that

• For any oracle , oracle TMs with access to satisfy the above two properties.O O

• Any result on TMs or complexity classes that uses only these two properties holds

Theorem (BGS75): There exist oracles and such that P NP and P NP .A B A = A B ≠ B

Thus, P vs NP question cannot be settled through diagonalization “alone”.

w.r.t oracle TMs with access to as well.O (We will see DTH w.r.t oracles soon)

Deterministic Time Hierarchy with Oracle
Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

…

Deterministic Time Hierarchy with Oracle

Proof:

Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

…

Deterministic Time Hierarchy with Oracle

Proof: Consider an oracle TM with access to that on input :D O x

Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

…

Deterministic Time Hierarchy with Oracle

Proof:

• Runs UTM on for steps.U (x, x) g(|x |)
Consider an oracle TM with access to that on input :D O x

Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

…

Deterministic Time Hierarchy with Oracle

Proof:

• Runs UTM on for steps.U (x, x) g(|x |)
Consider an oracle TM with access to that on input :D O x

• If with access to halts on and writes some bits on the output tape Mx O x

Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

…

Deterministic Time Hierarchy with Oracle

Proof:

• Runs UTM on for steps.U (x, x) g(|x |)
Consider an oracle TM with access to that on input :D O x

• If with access to halts on and writes some bits on the output tape Mx O x

Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

within this time,

…

Deterministic Time Hierarchy with Oracle

Proof:

• Runs UTM on for steps.U (x, x) g(|x |)
Consider an oracle TM with access to that on input :D O x

• If with access to halts on and writes some bits on the output tape Mx O x

Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

within this time, then outputs the opposite of the first bit.D

…

Deterministic Time Hierarchy with Oracle

Proof:

• Runs UTM on for steps.U (x, x) g(|x |)

• Else, outputs .D 0

Consider an oracle TM with access to that on input :D O x

• If with access to halts on and writes some bits on the output tape Mx O x

Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

within this time, then outputs the opposite of the first bit.D

…

Deterministic Time Hierarchy with Oracle

Proof:

• Runs UTM on for steps.U (x, x) g(|x |)

• Else, outputs .D 0

Consider an oracle TM with access to that on input :D O x

• If with access to halts on and writes some bits on the output tape Mx O x

Let denote the language decided by .L(DO) D

Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

within this time, then outputs the opposite of the first bit.D

…

Deterministic Time Hierarchy with Oracle

Proof:

• Runs UTM on for steps.U (x, x) g(|x |)

• Else, outputs .D 0

Consider an oracle TM with access to that on input :D O x

• If with access to halts on and writes some bits on the output tape Mx O x

Claim : DTIME .1 L(DO) ∈ (g(n))O

Let denote the language decided by .L(DO) D

Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

within this time, then outputs the opposite of the first bit.D

…

Deterministic Time Hierarchy with Oracle

Proof:

• Runs UTM on for steps.U (x, x) g(|x |)

• Else, outputs .D 0

Consider an oracle TM with access to that on input :D O x

• If with access to halts on and writes some bits on the output tape Mx O x

Claim : DTIME .1 L(DO) ∈ (g(n))O

Let denote the language decided by .L(DO) D

Claim : DTIME .2 L(DO) ∉ (f(n))O

Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

within this time, then outputs the opposite of the first bit.D

…

Deterministic Time Hierarchy with Oracle

Proof:

Proof: By defn. … using time-constructibility…

• Runs UTM on for steps.U (x, x) g(|x |)

• Else, outputs .D 0

Consider an oracle TM with access to that on input :D O x

• If with access to halts on and writes some bits on the output tape Mx O x

Claim : DTIME .1 L(DO) ∈ (g(n))O

Let denote the language decided by .L(DO) D

Claim : DTIME .2 L(DO) ∉ (f(n))O

Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

within this time, then outputs the opposite of the first bit.D

…

Deterministic Time Hierarchy with Oracle

Proof:

Proof: By defn. … using time-constructibility…

Proof: By contradiction …

• Runs UTM on for steps.U (x, x) g(|x |)

• Else, outputs .D 0

Consider an oracle TM with access to that on input :D O x

• If with access to halts on and writes some bits on the output tape Mx O x

Claim : DTIME .1 L(DO) ∈ (g(n))O

Let denote the language decided by .L(DO) D

Claim : DTIME .2 L(DO) ∉ (f(n))O

Theorem: If are time-constructible functions satisfying  f : ℕ → ℕ, g : ℕ → ℕ
f(n)log f(n) = o(g(n)), then for any , DTIME DTIME .O ⊆ {0,1} * (f(n))O ⊂ (g(n))O

within this time, then outputs the opposite of the first bit.D

…

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof:

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x within

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x within

 steps, where is a constant…c′￼f(|x |)log f(|x |) c′￼

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x

Let be a binary representation of whose length is sufficiently large.x M

within

 steps, where is a constant…c′￼f(|x |)log f(|x |) c′￼

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x

Let be a binary representation of whose length is sufficiently large.x M

What happens when with access to gets as input?D O x

within

 steps, where is a constant…c′￼f(|x |)log f(|x |) c′￼

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x

Recall :D

Let be a binary representation of whose length is sufficiently large.x M

What happens when with access to gets as input?D O x

within

 steps, where is a constant…c′￼f(|x |)log f(|x |) c′￼

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x

Recall :D

Let be a binary representation of whose length is sufficiently large.x M

What happens when with access to gets as input?D O x

within

 steps, where is a constant…c′￼f(|x |)log f(|x |) c′￼

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x

Recall :D

Let be a binary representation of whose length is sufficiently large.x M

What happens when with access to gets as input?D O x

• halts on within steps of .Mx x g(|x |) U

within

 steps, where is a constant…c′￼f(|x |)log f(|x |) c′￼

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x

Recall :D

Let be a binary representation of whose length is sufficiently large.x M

What happens when with access to gets as input?D O x

• If accepts ,Mx x
• halts on within steps of .Mx x g(|x |) U

within

 steps, where is a constant…c′￼f(|x |)log f(|x |) c′￼

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x

Recall :D

Let be a binary representation of whose length is sufficiently large.x M

What happens when with access to gets as input?D O x

• If accepts ,Mx x
• halts on within steps of .Mx x g(|x |) U

• If rejects ,Mx x

within

 steps, where is a constant…c′￼f(|x |)log f(|x |) c′￼

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x

Recall :D

Let be a binary representation of whose length is sufficiently large.x M

What happens when with access to gets as input?D O x

• If accepts ,Mx x
• halts on within steps of .Mx x g(|x |) U

• If rejects ,Mx x

within

then rejects .D x

 steps, where is a constant…c′￼f(|x |)log f(|x |) c′￼

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x

Recall :D

Let be a binary representation of whose length is sufficiently large.x M

What happens when with access to gets as input?D O x

• If accepts ,Mx x
• halts on within steps of .Mx x g(|x |) U

• If rejects ,Mx x

within

then rejects .D x

then accepts .D x

 steps, where is a constant…c′￼f(|x |)log f(|x |) c′￼

Deterministic Time Hierarchy with Oracle
Claim : DTIME .2 L(D) ∉ (f(n))O

Proof: Suppose an oracle TM with access to and run time that decides . ∃ M O O(f(n)) L(D)

• on any input halts within steps, where is a constant.M x cf(|x |) c

• UTM with access to can simulate with access to on input U O M O x

Recall :D

Let be a binary representation of whose length is sufficiently large.x M

What happens when with access to gets as input?D O x

• If accepts ,Mx x
• halts on within steps of .Mx x g(|x |) U

• If rejects ,Mx x

within

then rejects .D x

then accepts .D x

 steps, where is a constant…c′￼f(|x |)log f(|x |) c′￼

